Strategy Synthesis for (Global) Window PCTL

Shibashis Guha

Tata Institute of Fundamental Research

Joint work with Benjamin Bordais, Damien Busatto-Gaston, and Jean-François Raskin

July 31, 2022

Model-checking Probabilistic Concurrent Systems

Automatic Verification of Probabilistic Concurrent Finite-State Programs

Moshe Y. Vardi[†]

Center for Study of Language and Information Stanford University,

ABSTRACT

The verification problem for probabilistic concurrent finite-state program is to decide whether such a program satisfies its *linear temporal logic* specification. We describe an

- Concurrent Markov chains: Markov chains augmented with nondeterministic states with the nondeterminism being resolved by a scheduler.
- Markov Decision Processes (MDP) in the current literature.

Strategy Synthesis Problem

Automatic Verification of Probabilistic Concurrent Finite-State Programs

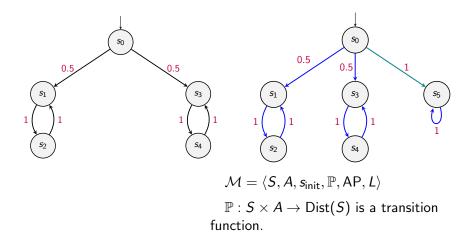
Moshe Y. Vardi[†]

Center for Study of Language and Information Stanford University,

ABSTRACT

The verification problem for probabilistic concurrent finite-state program is to decide whether such a program satisfies its *linear temporal logic* specification. We describe an

- "... designining a correct concurrent protocol is not an easy task.".
- Here, we consider the challenging problem of designing a system which is correct by construction against a given specification.


Strategy Synthesis Problem

- "... designining a correct concurrent protocol is not an easy task.".
- Here, we consider the challenging problem of designing a system which is correct by construction against a given specification.

Strategy synthesis problem:

Given an MDP \mathcal{M} , a probabilistic temporal logic formula Φ , determine if there exists a strategy σ to resolve the nondeterminism in \mathcal{M} such that the resulting Markov chain (MC) $\mathcal{M}[\sigma]$ satisfies Φ , and if so, construct one such strategy.

Markov decision process

Strategy in general

A (randomized memoryful/history-dependent) strategy is a function

```
\sigma: \mathsf{FPaths}_{\mathcal{M}} \to \mathsf{Dist}(A)
```

that maps finite paths to distributions over actions.

Strategy in general

A (randomized memoryful/history-dependent) *strategy* is a function

```
\sigma : FPaths<sub>\mathcal{M}</sub> \rightarrow Dist(A)
```

that maps finite paths to distributions over actions.

```
Deterministic (D) strategy

\sigma : FPaths<sub>M</sub> \rightarrow A

(otherwise, randomized (R))
```

Strategy in general

A (randomized memoryful/history-dependent) *strategy* is a function

```
\sigma : FPaths<sub>\mathcal{M}</sub> \rightarrow Dist(A)
```

that maps finite paths to distributions over actions.

```
Deterministic (D) strategy

\sigma : FPaths<sub>M</sub> \rightarrow A

(otherwise, randomized (R))
```

```
Memoryless (M) strategy

\sigma: S \rightarrow \text{Dist}(A)

(otherwise, history-dependent (H))
```

Strategy in general

A (randomized memoryful/history-dependent) *strategy* is a function

```
\sigma: \mathsf{FPaths}_{\mathcal{M}} \to \mathsf{Dist}(A)
```

that maps finite paths to distributions over actions.

```
Deterministic (D) strategy
```

```
\sigma: \mathsf{FPaths}_{\mathcal{M}} \to A
(otherwise, randomized (R))
```

Memoryless (M) strategy

 $\sigma: S \rightarrow \text{Dist}(A)$ (otherwise, history-dependent (H))

HR, HD, MR, MD

Strategy Synthesis for (Global) Window PCTL

Probabilistic Computational Tree Logic (PCTL) for specification

$$\Phi := p \mid \neg p \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \mathbb{P}[\varphi] \succcurlyeq c$$
$$\varphi := \mathsf{X} \Phi \mid \Phi_1 \mathsf{U}^{\ell} \Phi_2 \mid \Phi_1 \mathsf{W}^{\ell} \Phi_2 \mid \Phi_1 \mathsf{U}^{\infty} \Phi_2 \mid \Phi_1 \mathsf{W}^{\infty} \Phi_2$$

Strategy Synthesis for PCTL

Given a PCTL formula Φ , and an MDP \mathcal{M} : Does there exist a strategy σ such that $\mathcal{M}[\sigma] \models \Phi$?

Known to be highly undecidable for existence of HD strategies (Kucera et al, LICS'06)

L-PCTL specification

L-PCTL extends PCTL with *linear constraints* over probability subformulae.

$$\Phi := p \mid \neg p \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \sum_{i=1}^n c_i \mathbb{P} \left[\varphi_i \right] \succcurlyeq c_0$$
$$\varphi := \mathsf{X}^{\ell} \Phi \mid \Phi_1 \mathsf{U}^{\ell} \Phi_2 \mid \Phi_1 \mathsf{W}^{\ell} \Phi_2 \mid \Phi_1 \mathsf{U}^{\infty} \Phi_2 \mid \Phi_1 \mathsf{W}^{\infty} \Phi_2$$

The unbounded U and W are not used in window L-PCTL.

Window *L*-PCTL is a local property. $\mathbb{P}(F^5 \text{ Good}) \ge 0.95$ The probability to reach a good state within 5 steps is at least 0.95.

L-PCTL specification

L-PCTL extends PCTL with *linear constraints* over probability subformulae.

$$\Phi := p \mid \neg p \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid \sum_{i=1}^n c_i \mathbb{P} \left[\varphi_i \right] \succcurlyeq c_0$$
$$\varphi := \mathsf{X}^{\ell} \Phi \mid \Phi_1 \mathsf{U}^{\ell} \Phi_2 \mid \Phi_1 \mathsf{W}^{\ell} \Phi_2 \mid \Phi_1 \mathsf{U}^{\infty} \Phi_2 \mid \Phi_1 \mathsf{W}^{\infty} \Phi_2$$

The unbounded U and W are not used in window L-PCTL.

Window *L*-PCTL is a local property. $\mathbb{P}(F^5 \text{ Good}) \ge 0.95$ The probability to reach a good state within 5 steps is at least 0.95.

Global window property: $AG\Phi$

Along all paths, at every state, the local window property Φ will be satisfied.

 $\mathsf{A}\,\mathsf{G}\,[\mathbb{P}(\mathsf{F}^5\,\mathsf{Good})\geq 2\times\mathbb{P}(\mathsf{F}^{10}\,\mathsf{Bad}))]$

Strategy Synthesis for (Global) Window PCTL

Synthesis for Window L-PCTL objective

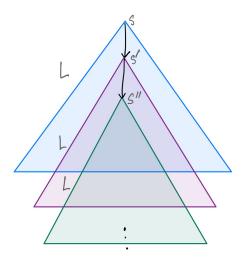
Complexity results

	M	Н
D	NP-complete (Baier et al, '04)	PSPACE-complete
R	PSPACE SQRT-SUM-hard (Kucera et al., '06)	EXPSPACE PSPACE-hard

Window L-PCTL: HR-synthesis

There is a variable corresponding to every finite path of length at most L and an action available from the last state.

 $\exists \text{-}\mathbb{R}$ formula of exponential size: EXPSPACE procedure.


Synthesis for global window L-PCTL objective

A G Φ , where Φ is a window *L*-PCTL formula.

Complexity results

	Μ	Н
D	NP-complete	2EXPTIME
	(Baier et al, '04)	EXPTIME-hard
R	PSPACE	coRE-complete (for flat and non-strict) Σ_1^1 -hard (for flat)
	$\operatorname{SQRT}\operatorname{-}\operatorname{SUM}\operatorname{-}\operatorname{hard}$	
	SQRT-SUM-hard (Kucera et al., '06)	

Global window L-PCTL: HR-synthesis

Fixed-point characterization: There exists a strategy σ so that $s \models_{\sigma} A G \Phi$ if and only if the greatest fixed point is non-empty.

Synthesis for global window L-PCTL objective

Complexity results

	М	H
D	NP-complete	2EXPTIME
	(Baier et al, '04)	EXPTIME-hard
R	PSPACE	coRE-complete (for flat and non-strict) Σ_1^1 -hard (for flat)
	$\operatorname{SQRT}\operatorname{-}\operatorname{SUM}\operatorname{-}\operatorname{hard}$	
	SQRT-SUM-hard (Kucera et al., '06)	

The first decidability result for HD strategies and quantitative probabilistic temporal properties.

Synthesis for global window L-PCTL objective

Complexity results

	M	H
D	NP-complete	2EXPTIME
	(Baier et al, '04)	EXPTIME-hard
R	PSPACE	coRE-complete (for flat and non-strict) Σ_1^1 -hard (for flat)
	$\operatorname{SQRT}\operatorname{-}\operatorname{SUM}\operatorname{-}\operatorname{hard}$	
	SQRT-SUM-hard (Kucera et al., '06)	

The first decidability result for HD strategies and quantitative probabilistic temporal properties.

Thank you for your attention!